A classification of conformal vector fields on the tangent bundle
نویسندگان
چکیده
منابع مشابه
conformal vector fields on tangent bundle with a special lift finsler metric*
on a finsler manifold, we define conformal vector fields and their complete lifts and prove that incertain conditions they are homothetic.
متن کاملTangent Bundle of the Hypersurfaces in a Euclidean Space
Let $M$ be an orientable hypersurface in the Euclidean space $R^{2n}$ with induced metric $g$ and $TM$ be its tangent bundle. It is known that the tangent bundle $TM$ has induced metric $overline{g}$ as submanifold of the Euclidean space $R^{4n}$ which is not a natural metric in the sense that the submersion $pi :(TM,overline{g})rightarrow (M,g)$ is not the Riemannian submersion. In this paper...
متن کاملVector Fields Tangent to Foliations
We investigate in this paper the topological stability of pairs (ω,X), where ω is a germ of an integrable 1-form and X is a germ of a vector field tangent to the foliation determined by ω.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Ukrains’kyi Matematychnyi Zhurnal
سال: 2020
ISSN: 1027-3190
DOI: 10.37863/umzh.v72i5.6013